A comparative Study on Phenotypic detection of Amp-C Beta Lactamases and Extended Spectrum Beta Lactamases in Gram Negative Bacterial urine isolates in a tertiary care hospital

ANURADHA
Department of Microbiology,
MADRAS MEDICAL COLLEGE AND GOVERNMENT GENERAL HOSPITAL

Abstract : The prevalence of multi drug resistant Gram Negative bacteria has increased in the past few years and the bacterial strains producing Amp-C Beta Lactamase and Extended Spectrum Beta Lactamase are of particular concern (1). With the increase in occurrence and different types of these multiple -lactamase enzymes, early detection is crucial. The benefits of which include implementation of proper antibiotic therapy and to frame infection control policy. Amp C Beta lactamase confer resistance to aminopenicillins, cephalosporin, oxyimino-cephalosporins (cefoxitin cefotetan) and monobactams and are not affected by clavulanic acid like Extended Spectrum Beta Lactamase producers The objective of the present study is to screen and phenotypically detect Amp-C Beta Lactamase and Extended Spectrum Beta Lactamase in Gram Negative Bacterial urine isolates. Out of the 100 cefoxitin and ceftazidime resistant strains taken for study 71 were found to produce Amp-C Beta lactamase 81 strains were found to produce ESBL. 17 strains were resistant to both cefoxitin-cloxacillin combination disc and ceftazidime-clavulanic acid disc. They are subjected to meropenem sensitivity and the results were analysed

Keyword : Key words ESBL, Amp C Beta lactamase, combination disc.

INTRODUCTION: Amp-C Beta Lactamases were classified as class C lactamases Ambler classification and in functional classification of Bush et al they were assigned to Class C. They confer resistance to aminopenicillins, cephalosporin, oxyimino-cephalosporins (cefoxitin & cefotetan) and monobactams. The ESBLs belong to Bush class A lactamases, that can hydrolyse the Penicillin’s, Oxyimino-cephalosporins and Monobactams and were inhibited by beta-lactamase inhibitors like Clavulanic acid, Sulbactam and Tazobactam(1) Amp-C Beta Lactamases were inhibited by Cloxacillin and 3 amino phenyl boronic acid but they were not affected by clavulanic acid. In Gram Negative Bacteria Amp-C Beta Lactamases production was either plasmid or chromosomal mediated. These enzymes were often produced by Escherichia coli, Klebsiella spp, Proteus mirabilis and Salmonella spp. They were associated with multiple antibiotic resistances and have only few therapeutic options. Different phenotypic screening methods were reported for detection of Amp-C Beta Lactamases. This disc diffusion test is based on comparison of the inhibition zone diameters around cefoxitin (30 ug) and cefoxitin disc supplemented with inhibitor cloxacillin (200ug) (HI media Mumbai). This test has sensitivity of 100% and specificity 98%. (7)

MATERIALS AND METHODS: A total of 756 urine samples were received for culture in our laboratory from February to august 2012. From these specimens 613 consecutive and non-duplicate isolates of Gram Negative Bacteria were screened for Amp C Beta lactamase and ESBL production. The isolates are speciated by standard biochemical methods (16).100 cefoxitin resistant (zone size <18mm) Gram Negative Bacterial isolates (Proteus spp. E.Coli, Klebsiella spp. Pseudomonas spp.) were taken for study. They have reduced susceptibility to ceftazidime (30ug), cefatoxime(30ug) and cefoxitin(30ug). Antibiotic susceptibility testing was performed using susceptibility test discs and interpretation was done according to CLSI guidelines 2011. ATCC E.coli 25922 used as a control strain.

SCREENING METHOD FOR AMP C BETA LACTAMASES : The Cefoxitin + Cloxacillin disc (cx+cxx,30ug /200ug) diffusion test was performed. It is based on inhibitory effect of Cloxacillin on Amp-C Beta Lactamases. A culture suspension of the test isolates was adjusted to 0.5 McFarland’s standard and inoculated by using a sterile cotton swab on the surface of a Mueller Hinton Agar plate, incubated at 37°C, for 18 to 24 hrs (16). The inhibition zones diameters were compared with and without cloxacillin, if the difference in inhibition zone was > 4mm, (7) the strain was considered to be positive for Amp-C Beta lactamases.(PIC 2)

DETECTION OF EXTENDED SPECTRUM BETA LACTAMASE:
Isolates resistant to Ceftazidime (zone size <27mm) were selected for confirmation of ESBL production. It was done by phenotypic confirmatory test. (DOUBLE DISC SYNERGY TEST) A culture suspension of the test isolates was adjusted to 0.5 McFarland’s standard and inoculated by using a sterile cotton swab on the surface of a Mueller Hinton Agar plate. Ceftazidime and clavulanic acid (10ug) disc were kept 30 mm distance from centre to centre. After incubating overnight
at 37ºC, the presence of enhanced zone of inhibition towards clavulanic acid disc indicates synergy and was interpreted as positive for ESBL production (12). (PIC 1) Positive control Klebsiella pneumoniae ATCC 700603 (Hi-media Laboratories, Mumbai, India) and negative control E.coli ATCC 25922 were used as control strains. 17 strains which were resistant to both combination discs were subjected to meropenem sensitivity. 12 strains were sensitive to imipenem and 5 strains were resistant.

RESULTS
One hundred Gram Negative Bacterial isolates which were resistant to ceftazidime and cefoxitin were screened for Amp-C Beta Lactamases and ESBL production. Many strains of Proteus sp. which produces Amp C Beta lactamase also found to produce ESBL. Out of 100 Cefoxitin resistant strains 71% were observed to produce Amp C Beta lactamase and 29% were resistant to the combination disc (cefoxitin+cloxacillin). 81% strains were found to produce ESBL and 19% were resistant to ceftazidime +clavulanic acid combination disc (TABLE 1). Resistant to both of these combination drugs may be due to alteration of outer membrane protein. 17 strains were resistant to both cefoxitin-cloxacillin combination disc and ceftazidime- clavulanic acid disc. They are subjected to meropenem sensitivity and the results were analysed.

TABLE 1:

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Isolates</th>
<th>Caftazidime+Clavulani Sensitive</th>
<th>Resistant</th>
<th>Cefoxitin+Cloxacillin Sensitive</th>
<th>Resistant</th>
<th>Both combination Sensitive</th>
<th>Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteus Spp</td>
<td>42</td>
<td>29 (68%)</td>
<td>13 (31%)</td>
<td>40 (95%)</td>
<td>2 (5%)</td>
<td>21 (58%)</td>
<td>6 (14%)</td>
</tr>
<tr>
<td>Klebsiella Spp</td>
<td>20</td>
<td>12 (60%)</td>
<td>8 (40%)</td>
<td>17 (85%)</td>
<td>3 (15%)</td>
<td>15 (75%)</td>
<td>4 (22%)</td>
</tr>
<tr>
<td>E.coli</td>
<td>11</td>
<td>7 (64%)</td>
<td>4 (36%)</td>
<td>10 (90%)</td>
<td>1 (10%)</td>
<td>6 (54%)</td>
<td>3 (27%)</td>
</tr>
<tr>
<td>Citrobacter Freundii</td>
<td>10</td>
<td>9 (90%)</td>
<td>1 (10%)</td>
<td>8 (80%)</td>
<td>2 (20%)</td>
<td>4 (40%)</td>
<td>1 (10%)</td>
</tr>
<tr>
<td>Pseudomonos Spp</td>
<td>8</td>
<td>6 (75%)</td>
<td>2 (25%)</td>
<td>2 (25%)</td>
<td>6 (75%)</td>
<td>2 (25%)</td>
<td>2 (25%)</td>
</tr>
<tr>
<td>Acinetobacter Spp</td>
<td>6</td>
<td>5 (83%)</td>
<td>1 (17%)</td>
<td>5 (83%)</td>
<td>1 (16%)</td>
<td>1 (16%)</td>
<td>1 (16%)</td>
</tr>
<tr>
<td>Enterobacter Spp</td>
<td>3</td>
<td>3 (100%)</td>
<td>0 (0%)</td>
<td>3 (100%)</td>
<td>0 (0%)</td>
<td>3 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>71</td>
<td>29</td>
<td>81</td>
<td>19</td>
<td>43</td>
<td>17</td>
</tr>
</tbody>
</table>

Urinary Tract Infection is the most common Hospital Acquired Infection accounting for 35% of nosocomial infections(25). High degree of resistance is observed in organisms causing nosocomial infections. Despite the discovery of ESBLs and Amp C Beta lactamase at least a decade ago, there remains a low level of awareness of their importance. Techniques to identify Amp C beta-lactamase producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. We should not miss the Amp C Beta lactamase producing strain because they were resistant to cephalosporins, Beta Lactamase inhibitors and monobactams. This combination drug test is found to be simple and cost effective in the presumptive screening of Amp C-Beta lactamase. Hence in the routine microbiological diagnostic methodology, Amp C Beta lactamase producers should be screened. Early detection of these Amp c beta-lactamase producing isolates in a routine laboratory could help to avoid treatment failure. Although ESBL production is the predominant antibiotic resistance mechanism observed in Gram Negative Bacteria isolates, the present study clearly indicates that Amp C Beta lactamase production is also of equal importance. Our findings showed the need to do screen to detect Amp C Beta lactamase producers and ESBL producers. The early detection of such resistant strains may curtail the spread of these strains, as the infections due to such resistant bacteria will lead to therapeutic failure.
REFERENCES

1. Phenotypic detection of extended-spectrum and AmpC-lactamases by a new spot-inoculation method and modified three-dimensional extract test: comparison with the conventional three-dimensional extract test. M. Shahid*, Abida Malik, Mithlesh Agrawal and Sanjay Singhal

17. Bailey and Scott’s Diagnostic Microbiology; Twelfth edition, Chapter 57, Urinary Tract Infection; 842-855.

