

University Journal of Pre and Para Clinical Sciences

ISSN 2455-2879

2020, Vol.6(8)

BENIGN INTRACRANIAL HYPOTENSION WITH INCIDENTAL PARASAGITTAL MENINGIOMA SUKUMAR R

Department of MEDICAL RADIOLOGY-DIAGNOSIS, MADURAI MEDICAL COLLEGE AND HOSPITAL

Abstract: Benign intracranial hypotension otherwise called as idiopathic intracranial hypotension is caused by CSF leaks due to disruption in spinal meninges. It is most commonly caused by disruption and leak at cervical and thoracic spine. Imaging is sometimes the most important key to the diagnosis of idiopathic intracranial hypotension which helps in appropriate treatment of the patient. Here we are presenting a case of benign intracranial hypotension associated with incidental parasagittal meningioma. **Keyword**: Benign Intracranial Hypotension, Parasagittal Meningioma, Magnetic Resonant Imaging, M. R. Myelogram. **INTRODUCTION**:

Benign intracranial hypotension otherwise called as Idiopathic intracranial hypotension (IIH) is one of the poorly understood entity. Patient may present with variety of clinical symptoms which makes the diagnosis difficult clinically. It can mimic many other CNS disease. Most of the time imaging only helps in the prompt diagnosis and hence helps the clinician in giving the correct treatment. We are presenting a case of benign intracranial hypotension with incidental finding of parasagittal meningioma. In some cases of parasagittal meningioma, intracranial hypotension have been reported[6]. But benign intracranial hypotension with parasagittal meningioma is a very rare presentation.

CASE HISTORY :

31 year old female came to our institute with complaints of headache and neck pain for past 2 months after trivial head trauma following a road traffic accident. Headache which is aggravating more when standing from sitting or from sleeping posture (Postural headache). H/o. projectile vomiting present for past one month. No H/o. fever, giddiness, e.n.t infection, previous surgeries. No h/o. any focal neurological deficit, seizure episodes. M.R.I brain plain and contrast was taken in our department. MRI shows 3.9'3*2.06 cm measuring T1/T2 iso intense extra axial lesion noted in left frontal parasagittal region (Fig. 1. a,b)

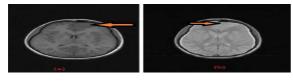


Fig. 1

compressing the left frontal lobe and abutting falx cerebri, which shows intense homogenous enhancement on T1 post contrast study (Fig. 2. a,b).

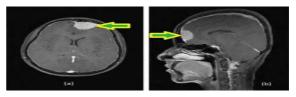


Fig. 2

No superior sagittal sinus involvement. No bony involvement. No calcification or haemorrhage. S/o. left frontal parasagittal meningioma. There is e/o. mild inferior displacement of mid brain (Fig. 3, blue arrow) with flattening of pons (Fig. 3, yellow arrow), Mild degree of tonsillar herniation (Fig. 3, red arrow) noted with slit like lateral ventricles.

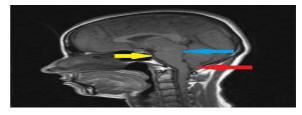
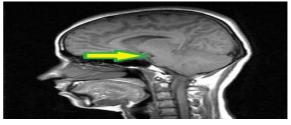
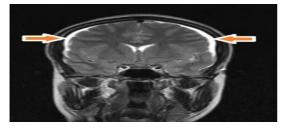
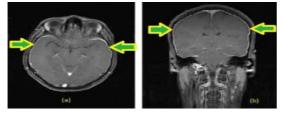
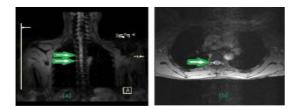


Fig. 3 and effacement of supra sellar cisterns (Fig. 4).


Fig. 4

An Initiative of The Tamil Nadu Dr. M.G.R. Medical University University Journal of Pre and Para Clinical Sciences Minimal bilateral subdural fluid collection (Fig. 5) seen.


Fig. 5

Post contrast study shows mild dural thickening and enhancement (Fig. 6 a,b).

Fig. 6

No e/o. significant cervical plexus enhancement noted. P/O. benign intracranial hypotension to be considered. One week later M.R MYELOGRAM was performed. T2 coronal and axial section of cervical and thorax spine shows csf space expansion around the nerve roots with mild dilatation of root sleeves is seen on the right side of D4, D5 levels which could represent sites of dural leak (Fig. 7 a,b).

fig. 7

High intensity streaks are observed along extra spinal nerve bundles. perineural cyst or meningocele are not seen. S/o. leak. An epidural blood patch was performed at the level of D4. (Fig. 8).

Fig. 8

And now patient has recovered from the symptoms. **DISCUSSION**

Benign intracranial hypotension is caused by one or more spinal CSF leaks. Prevalence all over world estimated to be 5 per 100000 per year.[3] In a community based study conducted in 1994, the prevalence of benign intracranial hypotension was estimated at 1 per 50000. [3] Once it was considered as rare disorder, but with the clinical symptoms and imaging, it has been considered as one of the important diagnosis of persistent

An Initiative of The Tamil Nadu Dr. M.G.R. Medical University University Journal of Pre and Para Clinical Sciences headaches, particularly among the young and middle aged patients. The prevalence of the disease now increased not due to the increased incidence, but due to the prompt diagnosis by imaging. More commonly seen in females. It is frequently misdiagnosed as the patients may present with variety of symptoms. It can be spontaneous or acquired. Mostly, sudden rupture of Spinal arachnoid diverticula result in spontaneous intracranial hypotension.[1] Though spontaneous intracranial hypotension can occur at any age, it is most commonly seen in third and fourth decade. [1] As said earlier, patient may present with variety of symptoms ranging from headache to coma. Most common symptom which leads to the suspicion of the spontaneous intracranial hypotension is orthostatic headache i.e. patient will have severe headache when standing or sitting and will relieved of symptoms while lying down.[2] This may be due to more leak through the tear due to gravitational force, results in more sagging down of brain stem and other pain sensitive structures results in headache. For orthostatic headache to occur, there has to be at least 10% loss of CSF through spinal leak has to occur.[1] Sometimes patient may complain neck pain/rigidity, non-orthostatic headache and occasionally visual disturbances. Other rare manifestations of spontaneous intracranial hypotension include parkinsonism, ataxia, and cerebellar haemorrhage.[4] Dementia is a rare complication of spontaneous intracranial hypotension.[5] Some causes for acquired intracranial hypotension are spinal trauma, lumbar puncture, vigorous cough, exercise, severe dehydration and some connective tissue disorders such as Marfan syndrome and Ehler - Danlos syndrome.[1] Spontaneous intracranial hypotension is diagnosed only after all of the above secondary causes are ruled out. Magnetic resonance imaging helps in arriving at the diagnosis without any need of invasive procedures, such as intracranial pressure monitoring. An incomplete understanding of the variability of MRI findings resulted in the diagnosis of spontaneous intracranial hypotension being excluded in patients with normal findings.[3] The imaging features of MRI characteristic of the spontaneous intracranial hypotension are 1. Bilateral subdural hygroma, 2. Post contrast enhancement of pachymeninges, 3. Engorgement of venous structures, 4. Pituitary hyperemia, and 5. Sagging of the brain (Mnemonic: SEEPS).[3] Myelography with iodinated contrast followed by thin - cut computed tomography of the entire spine or by using gadolinium contrast in MRI can be done to accurately define the location and extent of a CSF leak.

The leak may vary from a small amount of contrast tracking along a single nerve root to extensive bilateral collections of contrast within the paraspinal soft tissues.[3] The majority of CSF leaks are found at the cervico thoracic junction or along the thoracic spine. Frequently, multiple simultaneous CSF leaks are demonstrated. Delayed imaging may be required to visualize slow or intermittent leaks. Prompt diagnosis of the spontaneous intracranial hypotension results in proper treatment which may be simple in the form of bed rest, to epidural blood patch or by spinal tear closure. Meningioma are extra axial CNS tumours, whose association with spontaneous intracranial hypotension is very rare. Prevalence of association could not able to exactly ascertained.

REFERENCES

1. Osborn, Anne G. Hydrocephalus and CSF disorders. Osborn's brain imaging, pathology, and anatomy 1st ed. Salt Lake City: Amyrsys publication, Inc; 2013. P.1037-42.

2. Barry M. Rabin, Sudipta Roy Chowdhury, Joel R. Meyer, Bruce A. Cohen, Kenneth D. LaPat, Eric J. Russell. Spontaneous intracranial hypotension: spinal MR findings. AJNR Am J Neuroradiol. 1998; 19:1034–9.

3. Wouter I. Schievink. Spontaneous Spinal Cerebrospinal Fluid Leaks and Intracranial Hypotension. JAMA. 2006; 295 (19):2286-96.

4. Pakiam AS, Lee C, Lang AE. Intracranial hypotension with Parkinsonism, ataxia, and bulbar weakness. Arch Neurol. 1999; 56:869-72.

5. Hong M, Shah GV, Adams KM, Turner RS, Foster NL. Spontaneous intracranial hypotension causing reversible frontotemporal dementia. Neurology. 2002; 58:1285-7.

6. Soma M, Munemoto S, Kuroda E, Hamada Y, Mouri M. Para sagittal meningioma growing in superior saggital sinus presenting intracranial hypertension. No shinkei geka.1996; 24(2):165-8.

An Initiative of The Tamil Nadu Dr. M.G.R. Medical University University Journal of Pre and Para Clinical Sciences